The analysis of dynamics of tick infestation with babesia in the Kirov Region.

Link t full russian text
Download PDF format

   
Russian Journal of Parasitology, 2017, V.39, Iss.1
Received: 02.03.2016
Accepted: 10.03.2017

THE ANALYSIS OF DYNAMICS OF TICK INFESTATION WITH BABESIA IN THE KIROV REGION

Volkov S. A.1, Bessolitsyna E. A.1, Stolbova F. S.2, Darmov I. V.1
1 Department of Microbiology, Faculty of Biology, Vyatka State University, Kirov, 610000, 36 Moscow St., Russia
2 Department of Zoology and Apiculture, Faculty of Biology, Vyatka State Agricultural Academy, Kirov, 610017, 133 Oktyabr'skiy Prosp., Russia.

Abstract

Objective of research: To study the spread of causative agents of babesiosis in ticks collected on the territory of the Kirov region with the use of molecular-genetic methods.

Materials and methods:

In this paper, the method of molecular-genetic detection of genetic material of the pathogen in the sample was used (the method of polymerase chain reaction (PCR). Ticks were collected from vegetation cover as well as from people and domestic animals (dogs, cats). Ticks were estimated according to identification tables. Causative agents of babesiosis were determined by the extraction of total nucleic acids from each tick; all ticks were examined using PCR.  Total DNA extraction from ticks stored in 70% ethyl alcohol was performed with the use of guanidine thiocyanate. The proportion of ticks infected with Babesia was determined depending on the year, collection area on the territory of the Kirov region, species and sexual belonging of ticks.

Results and discussion: It was found that the major tick vectors of Babesia on the territory of the Kirov region are ticks Ixodes persulcatus. In addition, two other tick species Dermacentor reticulatus and I. ricinus were detected in that region. 

It was shown, that the rate of Babesia infection in ticks Ixodes persulcatus was higher than in D. reticulatus and I. ricinus. The average percentage of ticks infected with Babesia was 53,07 %. A gradual increase of percentage of infected individuals with the maximum value 73,2 % was registered in 2012. However, in the following year, a significant decrease (51,7 %) was reported, and the minimum number of ticks infected with Babesia was observed in 2014  (37,4 %). A significant increase in  infestation  of ticks was newly observed in 2015  (50,4 %). It was found that male and female ticks are equally likely to be vectors for Babesia. Infection rates in male and female ticks were 54,5 and 49,3 %, respectively. Fluctuations in the number of infected ticks depending on the year (maximum in 2012 and minimum in 2014) were determined. Ticks from South-West districts of the region are mostly infected with Babesia. In the city of Kirov, 55,8 %  of ticks are infected with Babesia in spite of acaricide treatment.

Keywords: tick-borne infections; babesiosis; ticks; polymerase chain reaction; PCR; diagnostics; anthropozoonosis; molecular diagnostics; Ixodes persulcatus; Dermacentor reticulatus.

References

1.                      Filippova N. A., Musatov S. A. Geographic variation of mature phase of Ixodes persulcatus (Ixodidae).  Experience in using morphometric databases. Parazitologiya [Parasitology], 1996, no. 3, pp. 205–215. (In Russian)

2.                      Filippova N. A. Taezhnyj kleshch Ixodes persulcatus Schulze (Acrana, Ixodidae): morfologiya, sistematika, ekologiya, meditsinskoe znachenie. [Taiga tick Ixodes persulcatus Schulze (Acrana, Ixodidae): morphology, systematics, ecology, medical value]. Leningrad, Nauka, 1985. 416 p. (In Russian)

3.                      Filippova N. A., Panova I. V.  Geographic variation of mature phase of Ixodes ricinus (Ixodidae) in the eastern part of areal.  Parazitologiya [Parasitology], 1997, no. 5, pp. 377–390. (In Russian)

4.                      Korotkov Yu. S., Okulova N. M.  Chronological structure of the population of  Taiga mites in  Primorsky Krai.  Parazitologiya [Parasitology], 1999, no. 3, pp. 257–266. (In Russian)

5.                      Kulik I. L., Vinokurova N. S. Areal of meadow ticks Dermacentor pictus in the USSR (Ixodidae). Parazitologiya [Parasitology], 1983, no. 3, pp. 207 – 213.  (In Russian)

6.                      Postanovlenie administratsii goroda Kirova ot 27.02.2015 № 672-P «O protivokleshchevoy (akaricidnoy) obrabotke territoriy, raspolozhennyh v Pervomayskom rayone municipal'nogo obrazovaniya «Gorod Kirov» (vmeste s «Perechnem territoriy, raspolozhennyh v Pervomajskom rayone municipal'nogo obrazovaniya «Gorod Kirov», dlya provedeniya protivokleshchevoy (akaricidnoy) obrabotki territorial'nym upravleniem administracii goroda Kirova po Pervomajskomu rayonu»). [Resolution of the authorities of the city of Kiev from 27.02.2015 № 672-P «On the anti-tick (acaricide) treatment on the territories located in the Pervomay District of the municipality «City of Kirov» (along with the «List of territories located in the Pervomay District of the municipality «City of Kirov», on conducting by the territorial authorities of the city of Kirov the anti-tick (acaricide) treatment in the Pervomay District»)]. (In Russian)

7.                      Stolbova F. S., Berdinskih I. S. Autumn activity of ticks Dermacentor Koch in the South-West of the Kirov region. Problemy biomonitoringa i bioindikatsii. Mater. dokl. VIII Vseros. nauch.-prakt. konf. [Problems of biomonitoring and bioindication. Proc. VIII All-Russ. sci.-pract. conf.].  Kirov, 2010, P. 2, pp. 17–21. (In Russian)

8.                      Gray J., Zintl A., Hildebrandt A., Hunfeld K. P., Weiss L. Zoonotic babesiosis: overview of the disease and novel aspects of pathogen identity. Ticks Tick Borne Dis., 2010, vol. 1, pp. 3–10.

9.                      Herwaldt B. L., Linden J. V., Bosserman E. et al. Transfusion-associated babesiosis in the United States: a description of cases. Ann. Intern. Med., 2011, vol. 155, pp. 509–519.

10.                  Hildebrandt A., Tenter A. M., Straube E., Hunfeld K. P. Human babesiosis in Germany: Just overlooked or truly new? Int. J. Med. Microbiol., 2008, vol. 298, pp. 336–346.

11.                  Hunfeld K. P., Hildebrandt A., Gray J. S. Babesiosis: recent insights into an ancient disease. Int. J. Parasitol., 2008, vol. 38, pp. 1219–1237.

12.                  Leiby D. A. Transfusion-transmitted Babesia spp. bull’seye on Babesia microti. Clinical microbiology reviews, 2011, vol. 24, no. 1, pp. 14–28.

13.                  Ramgopal Laha, Das M., Sen A. Morphology, epidemiology, and phylogeny of Babesia: An overview. Tropical Parasitology, 2015, vol. 5, no. 2, pp. 94–100.

14.                  Telford S. R., Spielman A. Reservoir competence of white-footed mice for Babesia microti. J. Med. Entomol., 1993, vol. 30, pp. 223–227.

15.                  Vannier E., Krause P. J. Human babesiosis. N. Engl. J. Med., 2012, vol. 366, pp. 2397–2407.

16.                  Víchová B., Miterpáková M., Iglódyová A. Molecular detection of co-infections with Anaplasma phagocytophilum and/or Babesia canis canis in Dirofilaria-positive dogs from Slovakia. Veterinary Parasitology, 2014, vol. 203, pp. 167–172.

17.                  Yabsley M. J., Shock B. C. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. Int. Parasit. Parasit. Wildlife, 2013, vol. 2, pp. 18–31.

© 2017 The Author(s). Published by All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants named after K.I. Skryabin. This is an open access article under the Agreement of 02.07.2014 (Russian Science Citation Index (RSCI)http://elibrary.ru/projects/citation/cit_index.asp) and the Agreement of 12.06.2014 (CA-BI.org/Human Sciences section: http://www.cabi.org/Uploads/CABI/publishing/fulltext-products/cabi-fulltext-material-from-journals-b...)